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EFFICIENCY OF ACCELERATING TUBES OF JET GRINDING MILLS 

M. A. Gol'dshtik and O. A. Likhachev UDC 621.926.8 

An analysis is made of the energy efficiency of accelerating tubes in counter- 
flow jet grinding mills. The dependence of the efficiency of these tubes on 
the parameters of the two-phase flow is established. 

The grinding of solid materials is one of the most energy-intensive processes in industry. 
This fact makes it particularly important to select the proper method of grinding for a given 
case. Thus, analysis of the energy efficiency of grinding mills is of definite interest with 
regard to improving grinding technology and mill design. One promising trend in grinding 
is the use of jet mills [i, 2], in which the material is ground by high-speed impact. Gas 
or steam is usually used as the working substance, the energy of the gas or steam accelerat- 
ing the starting material to velocities at which it breaks up upon impact against an obstacle 
(the wall of the mill or another portion of the material being ground). Here, the energy 
of the working substance is spent on the completion of useful work in accelerating particles 
of the material being ground, as well as on irreversible losses connected with the evolution 
of heat in interphase friction. Both types of energy expenditures depend on the phase slip 
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velocity and increase with an increase in the latter. The gas, doing work on accelerating 
particles in the straight tube, itself accelerates along the tube. However, its velocity 
cannot exceed the sonic velocity at the outlet. The critical tube length for which the gas 
reaches the speed of sound depends on many factors, particularly on the pressure at the inlet, 
the rate of flow of the solid phase, and its terminal velocity. The same factors determine 
the relationship between the useful work done by the gas and the irreversible losses. Below 
we study the energy efficiency of straight accelerating tubes. The complete system of equa- 
tions is written for both phases and is solved numerically. An approximate analytical solu- 
tion to the problem is also obtained. The good agreement the analytical solution and the exact 
numerical solution makes it possible to obtain fairly simple formulas which can be used to 
design accelerating tubes that are energetically optimum. 

We will examine a unidimensional steady two-phase flow consisting of a gaseous carrier 
medium and monodisperse solid particles of volumetric concentration ~. It is assumed that 
is small and that the particles interact only with the carrier medium. The equations of 

motion of the phases [3] in this approximation will be written in the form 

~9vv' = - - p ' - - F ,  

�9 Olww'=F,  ~ = l - - r .  (1 )  

Here 

F 3 ~T 0 (u - -  ~)2 --- ~p' ( 2 ) 
4 d 

is the force acting on the particles from the flow side. The first term in (2) is associ- 
ated with the resistance force of the particles contained in a unit volume during separated 
flow of the gas about them. The second term determines the force due to the presence of a 
pressure gradient in the continuous medium. The prime denotes a derivative with respect to 
the longitudinal coordinate. Assuming that the concentration of the solid phase is small, 
in the first term we have omitted factors connected with the change in the velocity of flow 
about a particle due to the presence of other particles (see [3, 4]). In the equation of 
motion of the gas phase we omitted the resistance force of the accelerating tube F~, which 
is much less than the resistance force of the solid phase: 

FI/F ~ (s < I. (2a  

For  t h e  c a s e  examined ,  Eq. (2a )  i s  v a l i d  d e s p i t e  t h e  c o n d i t i o n  ~ << 1, s i n c e  t h e  s i z e  
of the particles being accelerated is much less than the diameter of the accelerating tube, 
and the resistance coefficient of the circular tube is considerably less than the resist- 
ance coefficient of a sphere. Equations of motion (i) must be augmented by the energy and 
continuity equations for both phases: 

epv = G, Tplw = O1. (3)  

As already noted above, the energy of the gas is expended on doing mechanical work in 
accelerating particles and on work in overcoming interphase friction. The latter is connected 
with an increase in the entropy of the gas, i.e., with irreversible losses. The rate of heat 
release per unit mass of gas as a result of interphase friction is equal to 

~Q 
a t  = (fu)l(~p) ,  

where f = (3/4)(~z/d)~u 2, u = (v - w) is the phase slip velocity. Using the first law of 
thermodynamics in the form 

dQ := di--- dp/9, 

where i = cpT i s  t h e  e n t h a l p y  o f  t h e  g a s ,  and a l s o  u s i n g  Eqs.  ( 1 ) - ( 3 )  and t h e  r e l a t i o n s h i p  
between the longitudinal coordinate and time for a chosen element of the gas dx = vdt, we 
obtain the sought energy equation in the form 

d~ := - - G ,  [d (w~/2)-~ dp/p,l, G, == G1/G. (4)  

Here, i0 = cpT + v2/2 is the total enthalpy of a unit mass of gas. The second term in the 
right side of Eq. (4) represents the elementary work dA = -(Tp')/(~p)wdt due to the presence 
of the pressure gradient and completed by a unit mass of gas over particles in the gas at 
a given moment of time. 
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Generally speaking, along with heat liberation in the gas due to interphase friction, 
heat exchange occurs between the phases because the gas cools as it accelerates and does mech- 
anical work. However, it is not hard to see that the relaxation time for relatively short 
accelerating tubes and fairly high particle velocities is much greater than the particle trans- 
it time (the diameter of the particles being accelerated is not very small), i.e., 

cpld/~ ~ l/w. 

H e r e ,  c i s  t h e  s p e c i f i c  h e a t  o f  t h e  s o l i d  m a t e r i a l ,  a = a ( R e ,  P r )  i s  t h e  h e a t - t r a n s f e r  c o e f -  
f i c i e n t  o f  a p a r t i c l e ,  which  depends  on t h e  d i m e n s i o n l e s s  R e y n o l d s  and P r a n d t l  c r i t e r i a  [ 5 ] .  
In  many c a s e s  o f  p r a c t i c a l  i n t e r e s t ,  h e a t  e x c h a n g e  be tween  t h e  p h a s e s  can  be i g n o r e d .  

E q u a t i o n s  ( 1 ) - ( 4 ) ,  t o g e t h e r  w i t h  t h e  e q u a t i o n  o f  s t a t e  o f  t h e  g a s ,  g i v e  us  a c l o s e d  s y s -  
tem to determine all of the necessary parameters of both phases at any point of the acceler- 
ating tube. If we solve this system relative to the derivatives of the phase velocities, 
and if we introduce the Math number M = v/a, where a = (kRT) I/2, then the system can be writ- 
ten as follows: 

U' --=- f ,  

w' == f* (1 - -  M ~) + k (T .--  ~ , e )  NP 

*G (1 - -  M D + (z/s)~ ( v l w ) 1 6 ,  ' 

[k~ (1 + a , )  - -  (k - -  I) wlv l  Ivi ~- - -  {(~/~) ( v l w ) l a , }  

8 (1 - -  M ~) -t- (~/e) ~ ( v l ~ ) l G ,  " 

(Mg '  = [iv ' /v  - -  a ,  (~v)'i(~v)] M~ + (k - -  1) [v' lv + 6 ,  (wlv) 2 (w' lw)l M~, 

�9 ' =: -- ~ ( w ' l ~ ) ,  

cz, = 6 ,  (o/~,) (~ - -  ]) /k ,  

f ,  3 ~'~ (v- -  w)'. 
4 evd 

(5)  

The presence of the density of the gas 0 in the expression for ~, gives a closed system of 
equations represented in the form (5). However, since P/9! << i, then for relatively low 
values of G, we find that ~, << i. This allows us to close (5) and ignore terms on the order of 
~.~. Assuming ~ << i, we can omit terms containing ~ in the first two equations of system 
(5) and set e = i. This corresponds to a linear approximation with respect to x. Such an 
assumption essentially changes little. For example, the term in the braces in the second 
equation of (5) represents the change in gas velocity due to its expansion in the volume oc- 
cupied previously by solid particles due to a reduction in particle concentration downflow. 
At low particle concentrations, this factor can be ignored. 

System (5), augmented by the equations of continuity and state for the gas phase, can 
be solved numerically without the above-noted limitations. However, such an approach is just- 
ified when it is necessary to obtain an exact solution to a specific engineering problem. 
For general analysis, when the problem contains many parameters, it is better to attempt to 
find the most acceptable approximate analytic solution - even a solution that is simplified 
somewhat but that still reflects the basic content of the problem. 

The ratio of the phase velocities for the chosen acceleration scheme z = w/v < i, while 
the Mach number cannot be greater than unity because the speed of sound cannot be exceeded 
for the gas flow in the straight tube. We will make use of both of these facts: the first, 
for an expansion in z; the second, to replace the argument. The equation for z, with allow- 
ance for the above-noted approximations, has the form 

d__i_z =~ (1 - -  g) - -  O ,gz  [k - -  (k - -  1) z] , (6 )  

dy 6 , ~ { ( k  ..... 1)(1 - - y )  z + [2 + ( k - -  1)yl [ k - - ( k - -  1)zl} 

here we have introduced the notation y = M 2. 

We expand the right side of Eq. (6) into a series in z < i: 

dz (1 - -  g) z 

dg k G , g i [ 2 + ( k - - 1 ) g ]  g [ 2 + ( k - - 1 ) g l  (7 )  

X 
- [ 

l[ I 1 - -  (k 1 ) ( 1 - - k y )  z - -  
k [2 + (k - -  1) yl k~o,v [2 + (k - -  1) y] 

I +  

X 

k[2 + (k-- 1)V] 
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It is easy to find an approximate solution to Eq. (6) if we make several quite reasonable 
assumptions. First, the expression in the braces is on the order of unity if the following 
condition is satisfied: 

9o ~ ( k -  1) (8) 
2k~G, 

H e n c e f o r t h  t h e  i n d e x  ( 0 )  w i l l  d e n o t e  a v a l u e  o f  a q u a n t i t y  a t  t h e  t u b e  i n l e t ,  i . e . ,  Yo = 
Y[x=0- Since we are interested in the maximum value of G, for a given ratio of total pres- 
sure at the tube inlet to the static pressure at the outlet P, it will be shown below that 
there is a range of P for which Eq. (8) is satisfied. Second, k = 1.4 for diatomic gases 
and k = 1.3 and (k - l)y << 2 for steam, since y ! i. Thus, the following expression is an 
approximate solution of Eq. (6): 

1 
z == CF-Jl ~ (1 + 1/y), 

kG, ( 9 )  

c = tri m [zo + (like,)(1 + Im0)]. 
The e q u a t i o n  f o r  g a s  v e l o c i t y  h a s  t h e  f o r m  

dv _ k--(k--1)z (I0) 
vdg z{(k- -1) (1- -g)z+[2+(k--1)y][ t~-- (k- -1)z]}  

U s i n g  t h e  p r o c e d u r e  d e s c r i b e d  a b o v e  and  t h e  f o r m  o f  s o l u t i o n  ( 9 ) ,  we can  w r i t e  an a p p r o x i m a t e  
s o l u t i o n  o f  Eq. ( 1 0 )  a s  f o l l o w s :  

VtVo [ (k--1)12-~- I/go ] U2 := - exp [ r  (g,  go) l ,  ( 11 ) 
(k - -  1)/2 + 1/g 

~(~, y0)= {c(k--,)(1 + y ) _  (k--i)(i +Y~) }F 
2ky U2 4k2G*g ~o" 

The velocity of the particles is found from the relation w = vz. 

We will introduce characteristic scales of the physical quantities. For the scales of 
temperature and density we take their values at the inlet. For the scale of velocity we take 
the speed of sound in the gas phase at the tube inlet, while for the characteristic dimension 
we take the length of the accelerating tube I. We can use the equations of continuity and 
state for the gas phase to find the pressure 

1 2 
P/Po = (%vYo / )~(eft). (12) 

Here we used the expression for temperature. By definition, T = v2/y, P0 = RT0p, v• = y0 I/2. 
The ratio of the total pressure at the inlet to the static pressure at the outlet can be writ- 
ten by using Eq~ (12) and determining the total pressure of an adiabatically slowed gas: 

p =: ~ ( k - -  1 \h/'(~-~) 
~' .,I/~. kl ~- Yo] �9 (13) 
"0~/0 Ul 2 

Here the index ( i )  denotes a value of a quant i ty at y = i .  Af ter  a l l  of the necessary re la -  
t ions have been wr i t ten ,  the parameter E can be omitted in accordance with the above-made 
approximations. Also, the expression in brackets in (13) d i f f e r s  very l i t t l e  from uni ty .  
Thus i t ,  too, can henceforth be ignored. I f  we use the re la t i on  wl = v l z l ,  we can wr i te  Eq. 
(13) in the form 

" - - Y 0  ) ' .  kG. (p~y~/2 __ ~o) -- (1 ,/2.~ 
U1/2 

o 
The e x p o n e n t  o f  t h e  e x p o n e n t i a l  f u n c t i o n  i n  ( l i )  a t  y = 1 i s  

(14) 

{~(1, Yo){ ~-- (z~ - -  Zo) + yo Zo leG,go 
i] 

2kG,go (( 1, 

since i/(kG,y 0) << 2k/(k -- i), in accordance with condition (8). With allowance for this and 
Eq. (14), we write Eq. (13) in the form 
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Fig. i. Dependence of the ratio of the mass flow rates of the solid phase to 
the gaseous phase on the ratio of the total pressure at the tube inlet to the 
static pressure at the outlet for air: 1-3) wl/w 0 = 5, 7, i0 at w 0 = 1/34. 

Fig. 2. Efficiency of an accelerating tube in relation to the ratio of the total 
pressure at the tube inlet to the static pressure at the outlet. See Fig. i 
for significance of curves I-3. 

Fig. 3. Dependence of the dimensionless length of the accelerating tube L = 
(3~I)/(4d) on the ratio of the total pressure at the tube inlet to the static 
pressure at the outlet. See Fig. i for the significance of curves 1-3. 

=~ { /n  2 2 2. } P ( k + m ~  '/2 1 + k- -1  G, tYwiV0--w0) . (15) 

\ 2v0 J 4 
E q u a t i o n s  ( 1 4 )  and  ( 1 5 )  g i v e  t h e  d e p e n d e n c e  o f  G, on P i n  p a r a m e t r i c  f o r m .  I n  a c c o r d a n c e  
with the above assumptions, they must be augmented by inequality (8). Here, the condition 
w I < i is always satisfied because the velocity of the particles is referred to the speed 
of sound ao. Analysis of the numerical examples shows that the second term in braces in 
(15) can be ignored with good accuracy in a broad range of parameters. Inserting P = 
[(k + l)/(2yo)]I/2into (14) and (8), we finally have 

k wl - -  ~o 

i f  

1 ( k - -  1) p~. 
G, > - -  

k~ ( k + l )  

To check approximate solution (16), we performed an exact numerical integration of the initial 
system of equations (5) and examined several examples. The solid lines in Fig. i show data 
from the numerical integration;the dashed lines correspond to approximate solution (16), 
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and the dot-dash line represents the region of existence of the approximate solution [the 
inequality in (16)]. 

As the efficiency of the accelerating tube we will examine the ratio of the work done 
by the gas in increasing the kinetic energy of the particles to the work done by an ideal 
compressor in compressing a gas from a pressure equal to the static pressure at the tube out- 
let to a pressure equal to the total pressure at the inlet [6, 7]. Using the characteristic 
scales introduced earlier, we have the following expression for the efficiency: 

~] _ (k--  1) G, ( w ~ - - ~ )  (17)  
2 " 1 - - P  ( 1 - h ) / k  

In combination with (16), Eq. (17) answers the question posed at the outset regarding the 
energy efficiency of the accelerating tube. The length of the tube does not enter into the 
final expression for the efficiency because, in the formulation given, it is a sought quantity 
under specified external conditions and corresponds to the critical length for these condi- 
tions. However, when necessary, any quantity - the relative flow rate of the solid phase, 
for example - can be chosen as the sought quantity for a fixed tube length. 

Figure 2 shows the dependence of the efficiency of the accelerating tube on P for the 
case shown earlier in Fig. i. It is apparent that n increases with an increase in both the 
total pressure at the tube inlet and the terminal velocity of the particles. It follows from 
the latter that, from an energy point of view, in the case of a fixed ratio of total pressure 
at the tube inlet to the static pressure at the tube outlet P, it is more expedient to accel- 
erate the particles to greater velocities. However, there are fewer particles in this in- 
stance. As was noted in [8, 9], an increase in the number of particles is accompanied by 
an increase in the efficiency of the grinding operation. However, an increase in the termin- 
al velocity of the particles is also accompanied by an increase in the length of the acceler- 
ating tube at which this velocity is reached. The corresponding results are shown in Fig. 
3. The curves correspond to the numerical solution of system (5). Here we examined a 
straight tube of constant cross section. If the formulation of the problem is expanded to 
tubes of variable cross section, then with specified parameters of the two-phase flow the 
required tube length may be chosen on the basis of its shape. Here, the conclusions made 
above regarding the efficiency of the tube remain valid. 

In conclusion, we would like to note that the approximate solution represented by Eqs. 
(16) and (17) makes it possible to limit oneself to a relatively small number of the most 
important parameters in analyzing the efficiency of accelerating tubes. This fact consider- 
ably simplifies the problem of optimizing accelerating tubes. 

NOTATION 

D, l, ~, diameter, length, and resistance coefficient of the accelerating tube; d, Pl, 
and E, diameter, density, and hydraulic resistance coefficient of a particle; p, v, density 
and velocity of gas; ~, w, volume concentration of solid particles and their velocity; E, 
porosity; G, GI, mass flow rates of the gaseous and solid phases through a unit area of the 
accelerating tube; M, Mach number; a, speed of sound in the gas; k, R, adiabatic exponent 
and gas constant of a unit mass of the gas; P, ratio of the total pressure at the tube inlet 
to the static pressure at the outlet; n, efficiency of the accelerating tube; L, dimension- 
less length of the tube; p, static pressure. 
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DETERMINATION OF THE HEAT-TRANSFER CHARACTERISTICS 

IN A CHANNEL OF ANNULAR CROSS SECTION WITH SPIRAL FINS 

G. V. Konyukhov, A. I. Petrov, and Yu. G. Smirnov UDC 536.242 

The characteristics of heat transfer in the developed turbulent flow of a viscous 
incompressible liquid in a slot channel of annular cross section with spiral fins 
are analyzed. Expressions are obtained for calculating the Nusselt numbers at 
the convex and concave walls of the channel. 

In the literature there are experimental data on the asymmetry of the averaged velocity 
profiles and the distributions of pulsation components in curved channels [1-4]. One can 
presume the existence of the corresponding asymmetry of the conditions of heat transfer be- 
tween the heat-transfer agent and the walls in a curved channel, which is also confirmed ex- 
perimentally for plane curved channels [I]. 

Let us estimate the possible difference between the values of the heat-transfer coeffi- 
cient ai,2 = qz,2/(T1,2 - T) at the convex and concave walls of a channel of annular cross 
section with spiral fins as a function of the geometrical characteristics of the channel, 
the physical characteristics of the heat-transfer agent, and the hydrodynamic pars~eters of 
the flow. We carry out the analysis using the methods and assumptions adopted in the investi- 
gation of hydraulics and heat transfer in smooth annular channels without fins and plane curved 
channels [i-6]. We consider the turbulent flow of an incompressible viscous heat-transfer 
agent in an annular channel with spiral fins under steady-state conditions of moderate heat 
fluxes and velocities, outside the region of the disturbing action of the fins. We assume 
that the thermophysical properties of the liquid are constant and the heat flux through the 
walls of the annular channel is constant along the channel length and angularly. 

We assume that secondary flows are absent, i.e., 

s s 
V r = O ,  Y z =  V ~ - - ,  % = % ~ ,  

2nr 2~r 

(1) 
OP OP S 1 OV S OV OT OT S 

Oz rO~ 2~r ' r O~ 2nr Oz ' Oz rO~ 2nr"  

A t  t h e  i n n e r  a n d  o u t e r  w a l l s ,  

-- 0T I VI,2 = 0, ql,~ = ~1,2 (TI,~ -- T) = -- ~ . ( 2 ) 
Or r=rt,e 

We d e t e r m i n e  t h e  c h a r a c t e r i s t i c s  o f  h e a t  t r a n s f e r  a t  t h e  i n n e r  a n d  o u t e r  w a l l s  o f  t h e  c h a n n e l  
i n  t h e  f o r m  o f  t h e  f u n c t i o n s  

Nu1,~ = f(Re, Pr ,  S/2~r2, 6/r 2, ql/q~), 

Nul,~ = al,2dh/~ = 2ql,26/~ (T1,2 - -  T), 6 = r z - -  r l .  

Translated from Inzhenerno-Fizicheskli Zhurnal, Vol. 49, No. 4, pp. 562,571, October, 
1985. Original article submitted July 4, 1984. 
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